Modified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem

نویسندگان

  • John H. Drake
  • Ender Özcan
  • Edmund K. Burke
چکیده

Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework for iterative selection hyper-heuristics relies on two key components, a heuristic selection method and a move acceptance criterion. Existing work has shown that a hyper-heuristic using Modified Choice Function heuristic selection can be effective at solving problems in multiple problem domains. Late Acceptance Strategy is a hill climbing metaheuristic strategy often used as a move acceptance criteria in selection hyper-heuristics. This work compares a Modified Choice Function Late Acceptance Strategy hyper-heuristic to an existing selection hyper-heuristic method from the literature which has previously performed well on standard MKP benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Knapsack Problem: The Influence of Representation

Fitness landscape analysis techniques are used to better understand the influence of genetic representations and associated variation operators when solving a combinatorial optimization problem. Five representations are investigated for the Multidimensional Knapsack problem. Common mutation operators (like bit-flip mutation) and classic 1-point and uniform crossover are employed to generate fit...

متن کامل

A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem

Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing numbe...

متن کامل

Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls

This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a variant of the classical 0–1 Knapsack Problem. We apply a transformation technique to map the multidimensional resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the near-optimal solution of the MMKP. We present the computational complex...

متن کامل

A New Strategy for Solving Multiple-Choice Multiple-Dimension Knapsack Problem in PRAM Model

This paper presents a new heuristic algorithm for the MultipleChoice Multi-Dimension Knapsack Problem (MMKP) in PRAM model. MMKP is a variant of the classical 0-1 knapsack problem, has a knapsack with multidimensional capacity constraints, groups of items, each item having a utility value and multidimensional resource constraints. The problem is to maximize the total value of the items in the k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014